Multiomic analysis reveals cell-type-specific molecular determinants of COVID-19 severity

Stanford Healthcare Innovation Team
Sep 7, 2022
NKCells_CellSystems_cover

Get in touch

Reach out to contribute a post like this.

Featured on this month’s cover of Cell Systems:

Highlights

Authors: Sai Zhang, Johnathan Cooper-Knock, Annika K. Weimer, Minyi Shi, Lina Kozhaya, Derya Unutmaz, Calum Harvey, Thomas H. Julian, Simone Furini, Elisa Frullanti, Francesca Fava, Alessandra Renieri, Peng Gao, Xiaotao Shen, Ilia Sarah Timpanaro, Kevin P. Kenna, J. Kenneth Baillie, Mark M. Davis, Michael P. Snyder

  • Machine learning combines GWAS with single-cell omics to discover COVID-19 risk genes
  • Discovering that severe COVID-19 risk genes account for 77% of the observed heritability
  • Genetic risk for severe COVID-19 is focused within NK cells and T cellsMendelian randomization and single-cell multiomics highlight CD56bright NK cells

Summary

The determinants of severe COVID-19 in healthy adults are poorly understood, which limits the opportunity for early intervention. We present a multiomic analysis using machine learning to characterize the genomic basis of COVID-19 severity. We use single-cell multiome profiling of human lungs to link genetic signals to cell-type-specific functions. We discover >1,000 risk genes across 19 cell types, which account for 77% of the SNP-based heritability for severe disease. Genetic risk is particularly focused within natural killer (NK) cells and T cells, placing the dysfunction of these cells upstream of severe disease. Mendelian randomization and single-cell profiling of human NK cells support the role of NK cells and further localize genetic risk to CD56bright NK cells, which are key cytokine producers during the innate immune response. Rare variant analysis confirms the enrichment of severe-disease-associated genetic variation within NK-cell risk genes. Our study provides insights into the pathogenesis of severe COVID-19 with potential therapeutic targets.

Keywords

Introduction

Infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) giving rise to coronavirus disease 2019 (COVID-19) has caused a global pandemic with almost unprecedented morbidity and mortality (Dong et al., 2020). Severity of COVID-19 is markedly variable ranging from an asymptomatic infection to fatal multiorgan failure. Severity correlates with age and comorbidities (Shang et al., 2020) but not exclusively (Li et al., 2020). Host genetics is thought to be an essential determinant of severity (The COVID-19 Host Genetics Initiative, 2020), but this is poorly understood. Improved tools to identify individuals at risk of severe COVID-19 could facilitate life-saving precision medicine.


Read the full research paper here >

Figure 2A

Multiomic analysis reveals cell-type-specific molecular determinants of COVID-19 severity
Figure 1 Schematic of the study designShow full captionView Large Image Figure ViewerDownload Hi-res image Download (PPT)

Read the full research paper here >
NewsPrecision Healthcarescience
Michael Snyder, PhD, PresidentBiden and Rob Moritz, PhD
Michael Snyder, PhD, President Biden and Rob Moritz, PhD, supporting healthcare, science and genetic research at the highest level

Michael Snyder, PhD, President Biden and Rob Moritz, PhD, supporting healthcare, science and genetic research at the highest level

Supporting Hupo.org, Presdient Biden met with Michael Snyder, PhD and Rob Moritz to support science progress and the life-saving effects of Dr. Michael Snyder's ground breaking research in preventing diseases and key discoveries improving human health.

New Publicationresearch
Snyder Lab Cell Report Journal Cover
Transcriptomic and proteomic data, cell lines, and cell culture resources that may be broadly enabling for non-human primate iPSC research

Transcriptomic and proteomic data, cell lines, and cell culture resources that may be broadly enabling for non-human primate iPSC research

Featured on the cover of Cell Reports journal August 2022: Dr. Michael Snyder and team have released key findings.

This work is a step forward leveraging primate stem cells for future of organ generation. A significant potential of this work is to utilize generation of primates (including human) tissues and organs to reduce, refine and eventually replace the use of animals in biomedical research.

ConferenceHospitalPrecision Medicine
Michael P. Snyder, PhD Attends the Inauguration of Amrita Hospital
Dr. Michael Snyder delivers Health Innovation keynote at Amrita University and meets India’s Prime Minister Narendra Modi in New Delhi, August 22-25, 2022

Dr. Michael Snyder delivers Health Innovation keynote at Amrita University and meets India’s Prime Minister Narendra Modi in New Delhi, August 22-25, 2022

While in India as a featured distinguished speaker for the International Summit on Health Innovation Grand Challenges & Global Collaborations, Michael P. Snyder, PhD attended the inauguration of Amrita Hospital, Faridabad with Prime Minister Narendra Modi, Spiritual Leader Mata Amritanandamayi (Amma), Dr. Girija V, Dr. Krish Ramachandran and other supporters, ushering in the country’s largest private hospital.

NewsresearchResearch Study
A cancer-associated RNA polymerase III identity drives robust transcription and expression of snaR-A noncoding RNA

A cancer-associated RNA polymerase III identity drives robust transcription and expression of snaR-A noncoding RNA

Results from this research support a model in which Pol III identity functions as an important transcriptional regulatory mechanism. Upregulation of POLR3G, which is driven by MYC, identifies a subgroup of patients with unfavorable survival outcomes in specific cancers, further implicating the POLR3G-enhanced transcription repertoire as a potential disease
factor.

COVID-19Media Spotlight NewsPrecision MedicineResearch StudyTechnology
Michael Snyder Interviewed by CBS News
CBS News Interviews Michael Snyder About Our Wearables Research Study and Self-Tracking Your Health Data.

CBS News Interviews Michael Snyder About Our Wearables Research Study and Self-Tracking Your Health Data.

"Stanford School of Medicine professor Michael Snyder is conducting several studies to see how far wearables can go in detecting disease. "You don't drive your car around without a dashboard," he said. "Yet, here we are as people. We're more important than cars, but we're running around without any sensors, most people. And we should be wearing these things, in my opinion, because they can alert you to early things."

Media Spotlight News
Illustration of Michael P. Snyder from Body Count Article in Stanford Magazine
Body Count, how Michael Snyder’s self-monitoring project could transform human health

Body Count, how Michael Snyder’s self-monitoring project could transform human health

"You prick your fingertip, put it on a sensor, and more biometrics scroll along the glass, all in blue, none in red to flag an anomaly."

"This is the future that Michael Snyder, director of the Center for Genomics and Personalized Medicine and chair of the department of genetics, wants for everyone on Earth. He’s already cobbling it together for himself. Each morning, he straps on four smartwatches and an Exposometer to measure levels of airborne particles. He has a continuous glucose monitor for his blood sugar and an Oura ring to track his sleep." Read More >

COVID-19
Graphic showing a smartphone in someone's hand opened to MyPHD study app that's collecting data from a smartwatch
Stanford’s large-scale, real-time monitoring & alerting system detects 80% of COVID-19 illnesses at or prior to symptom onset

Stanford’s large-scale, real-time monitoring & alerting system detects 80% of COVID-19 illnesses at or prior to symptom onset

Harnessing wearable data, the first large-scale, real-time monitoring & alerting system from Stanford detects abnormal physiological events, such as COVID-19 and other respiratory illnesses.

New Publication
New machine learning algorithm from Stanford team leads to the discovery of hundreds of potential drug targets for ALS

New machine learning algorithm from Stanford team leads to the discovery of hundreds of potential drug targets for ALS

Utilizing a new machine learning method named RefMap, Dr. Michael Snyder and scientists at Stanford Medicine identified hundreds of ALS risk genes, leading to potential new ALS treatment discovery and a 5-fold increase in recovered heritability, a hallmark pathology of ALS.

New Publication
Longitudinal data study shows gut microbiome diversity changes at the subspecies level during antibiotic treatment

Longitudinal data study shows gut microbiome diversity changes at the subspecies level during antibiotic treatment

Published as the August 2021 Genome Research cover publication, a Stanford research team found evolutionary & ecological changes in human gut microbiome subspecies during antibiotic treatment based on longitudinal data.

Program Launch
A virtual workshop experience from Stanford Medicine featuring topics such as personalized medicine, big data, & AI
Personalized Medicine, Big Data, & AI Explorers, a new virtual summer workshop from Stanford Medicine

Personalized Medicine, Big Data, & AI Explorers, a new virtual summer workshop from Stanford Medicine

A virtual, two-week summer intensive workshop from Stanford Medicine for students 16 and older that transports participants to the forefront of healthcare innovation research featuring topics such as precision health, big data, & AI.

Media Spotlight
Dr. Michael Snyder discusses deep profiling for personalized medicine on Rhonda Patrick’s FoundMyFitness Podcast

Dr. Michael Snyder discusses deep profiling for personalized medicine on Rhonda Patrick’s FoundMyFitness Podcast

Dr. Michael Snyder, a pioneer in longitudinal profiling and personalized medicine, speaks with Rhonda Patrick about his team's work at Stanford, covering areas such as CGMs, multiomics, and wearable data.

New Publication
Graphic showing a smartphone in someone's hand opened to MyPHD study app that's collecting data from a smartwatch
Real-time alerting system for COVID-19 using wearable data – Stanford preprint available now

Real-time alerting system for COVID-19 using wearable data – Stanford preprint available now

Our preprint for Phase 2 of our COVID-19 wearable study is available now! This is the 1st large-scale real-time monitoring and alerting system for detecting abnormal physiological changes, including COVID-19 and other respiratory illnesses, using smartwatch data.

Research Study
Clinician giving a vaccination
A new research study from Stanford Medicine featuring molecular profiling of COVID-19 vaccine response utilizing at-home microsampling

A new research study from Stanford Medicine featuring molecular profiling of COVID-19 vaccine response utilizing at-home microsampling

A new study from Stanford Medicine aims to understand the differences in individual responses to COVID-19 infection and response to vaccination using microsampling.

Community Events
cloud computing
Insights in the future of cloud computing and its impact on healthcare applications

Insights in the future of cloud computing and its impact on healthcare applications

Dr. Amir Bahmani, Director of Science & Technology at our lab, discussed the future of cloud computing and its impact on healthcare applications with Eric Schmidt, co-founder of Schmidt Futures and former CEO of Google, and Mark Russinovich, CTO of Microsoft Azure.

Become a lab insider.

Sign up for our newsletter and be the first
to hear about new studies in development.

subscribe

Subscriber Benefits

Home

About

Research

Connect

COVID-19 Wearables

Snyder Lab

SCGPM

Stanford Medicine

Healthcare Innovation Lab at Stanford University School of Medicine.
© Stanford University. Stanford, California 94305.